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Abstract—For distributed estimation arising in the nonlinear
least squares (NLLSs) problems over adaptive networks, where
every node has the abilities of data processing and learning,
only the incomplete local data are exploited by the traditional
noncooperative method, thereby resulting in the degradation on
estimation performance. In this article, a cooperative diffusion
strategy is proposed by using a Gauss–Newton (GN) method in
order to fully utilize the diversity of temporal–spatial data on
local updates. The proposed algorithm includes two steps, i.e.,
aggregate then update (ATU), where the aggregating step collects
in real time the global information instead of local information
due to the diffusion strategy, and the updating step implements
the local GN iteration. The resulting ATU diffusion algorithm
is a distributed and cooperative system without any increase on
communication cost, as compared with the noncooperative ver-
sion. Based on the detailed convergence analysis for ATU, which
is fundamental to the promotion of this algorithm, the sufficient
conditions for convergence are derived and the evidences of faster
convergence than the noncooperative version are provided. The
simulation results confirm the obtained theoretical derivations by
applying the ATU algorithm to an NLLS-based target localization
problem and show the cooperation gains in many aspects, such
as the convergence rate, steady-state accuracy, and robustness to
noisy range, step size, node, and link failures.

Index Terms—Adaptive networks, cooperation strategy, dif-
fusion, distributed estimation, Gauss–Newton (GN) method,
nonlinear least squares (NLLSs), target localization.
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I. INTRODUCTION

GAUSS–NEWTON (GN) method has been widely found
in many applications, such as deep learning in artifi-

cial intelligence and neural network [1]–[3], and parameter
estimation in a networked system [4], [5]. Derived from
Newton’s method, GN algorithm discards the second-order
terms in the computation of Hessian for small residual nonlin-
ear least squares (NLLSs) problems, thereby only computing
the Jacobian for saving in computation and maintaining fast
convergence. Such amount of computations can be further
reduced via the mathematical process. In order to compute
easily the first derivative of the objective function, the per-
turbed GN method is proposed in [6], where a perturbed
derivative version substitutes the original one. The trun-
cated GN method [7] is proposed to implement the inexact
update instead of the exact one. The truncated-perturbed GN
method [7] integrates the above two advantages into the update
step.

Many scenarios can be modeled as the NLLS problem,
whose solution depends on the performance of GN, such
as computer vision [8], image alignment and reconstruc-
tion [9], [10], network-based localization [11], [12], signal
processing for direction-of-arrival estimation and frequency
estimation [13], logistic regression [14], and power system
state estimation [5]. Despite the widespread utility, it is diffi-
cult to exploit the original GN method as a fully cooperative
scheme for a distributed network, since its iteration rule
involves the matrix inverse operator, which is ideally suited to
be implemented in a centralized way. However, for the well-
known advantages, such as load balancing and robustness, a
distributed algorithm with the improvement of performance is
preferred.

As the problem of minimizing a convex objective function,
an NLLS problem can also be solved by most common uncon-
strained optimization methods, such as the first-order gradient
descent [15] and second-order Newton’s methods [16], both
of which are studied as error feedback-based neural network
learning methods [17], [18]. The biggest advantage of a gra-
dient/subgradient descent method is its simplicity with low
computational cost. However, the estimation accuracy and
convergence rate are difficult to meet for many applica-
tions with high quality of service. Newton’s method has a
typically quadratical convergence rate, which is faster than
the common linear gradient descent methods. However, the
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heavy computation on the second-order Hessian restricts the
applications of Newton’s method in practice. Unlike Newton’s
method, the GN method only requires the knowledge of
the first-order Jacobian without seriously compromising its
convergence behavior. In an adaptive network, the diffusion
version of the least mean square (LMS) method, referred to
as stochastic gradient method, is proposed in [19]. The diffu-
sion LMS method considers the gradient descent update using
the real-time estimates from neighborhood, thus resulting in
noticeable improvement. Such an intelligent scheme is absent
in the study of most existing distributed optimization meth-
ods [20], which mainly focus on (sub)gradient-based primitive
cooperation. Inspired by the diffusion LMS method, in this
article, we attempt to develop a diffusion scheme for the GN
method because of its above advantages.

As an attractive in-network data processing way, the dif-
fusion strategy [21] differs from other distributed strategies,
such as incremental cooperation [22], [23] and gossip coop-
eration [5], [24], which are based on the cyclic path and
probabilistic diffusion, respectively. Without a fusion center
(FC) as the centralized controller and any specialized explo-
ration on routing as the incremental and the gossip ways,
any peer-to-peer communication under the diffusion strategy
can occur as long as they are linked. Such a way of com-
munication makes it easier to achieve effective information
sharing and cooperation via local interactions. The diffusion
structure also shows the inherent advantages, including the
robustness against failure of nodes and links, enhanced adapta-
tion performance, and wider stability ranges [25]. Distributed
estimation algorithms over the diffusion network have been
proposed in the context of adaptive filtering, such as diffu-
sion LMS [26], diffusion RLS [27], and diffusion Kalman
filtering [28], [29].

The purpose of this work is to develop a diffusion GN strat-
egy over an adaptive network, where every node senses the
temporal data that are variable over the spatial domain and
has the adaption ability by learning and cooperating. Several
diffusion GN methods [12], [30] are proposed for solving the
localization problem in wireless sensor networks. However,
they are centralized in nature and implemented in a noncoop-
erative way, in which the local intermediate estimates are not
shared over the diffusion network.

Unlike the traditional diffusion GN methods, this article
presents a novel cooperative diffusion strategy for GN method
that can be used to solve the NLLS problems over an adap-
tive network. The motivation behind the cooperation scheme
is that local estimates are exchanged among the neighboring
nodes and fused into the local iteration step. In this case, the
diversity of temporal–spatial data is fully utilized by local
nodes. Such information exchange is potentially useful for
the performance improvement for the noncooperative diffusion
GN method. The resulting algorithm, named ATU, consists of
aggregating and updating steps, where the aggregating step
collects the real-time variations across the network based on
the peer-to-peer diffusion protocol, such that the updating
step can promptly respond to these variations. In short, the
proposed algorithm has the advantages of distribution, coop-
eration, robustness, and fast convergence, as compared with

the noncooperative diffusion algorithm. Our recent work [31]
proposes a variant of ATU that implements in a first update
and then aggregate way, namely, UTA. Under sufficient dif-
fusion across the network, the UTA version achieves similar
or slightly better performance to the ATU. However, the
work [31] does not provide directly the detailed convergence
analysis, thus resulting in the absence of such important the-
oretical results. More importantly, the performance of UTA
degrades significantly in the case of sparse networks.

Our main contributions are twofold and summarized as
follows.

1) The proposed strategy contributes significantly to solve
the typical NLLS estimation problems over a diffusive
networked system in a fully cooperative way between
neighboring nodes. The resulting algorithm is simple
but effective and provides better performance than the
traditional methods with inadequate cooperation, where
nodes exchange the GN descent information instead
of immediate estimates. Such full cooperation pro-
vides the motivation for developing the new fusion
modes based on cooperative iteration-type methods with
other in-network processing, such as gossip and consen-
sus, which have been widely studied in the distributed
computing community.

2) Another important contribution of this article is to con-
firm theoretically and experimentally the convergence
of the proposed diffusion algorithm and give the suf-
ficient conditions for convergence in a global view.
Furthermore, the cooperative benefit to achieve fast
convergence is validated by investigating the spectral
properties of the diffusion network based on a specified
aggregate rule. We also provide several options used as
the aggregate rule.

This article is organized as follows. In Section II, we
describe the NLLS problems in a distributed network and
introduce the traditional GN solution. In Section III, we derive
the cooperative diffusion algorithm based on the aggregating
then updating steps. Then convergence analysis with sufficient
conditions of ATU follows in Section IV. Simulation results
for target localization are provided in Section V. The whole
paper is concluded in Section VI.

Notation: The operator (·)T denotes the transpose for a
matrix or vector, and the operator (·)−1 denotes the inverse of
a nonsingular matrix. Capital letters and small letters in bold
are used when matrices and vectors are denoted, respectively,
while scalars are denoted in the normal font. The 2-norm
of a matrix G and vector x are denoted by ‖G‖ and ‖x‖,
respectively. IN and 1N denote the N × N identity matrix
and N × 1 vector, whose every entry is 1, respectively. ⊗
denotes the Kronecker product operation. We use subscripts
k, l, u, and t to denote the node, and superscripts j and i to
denote time.

II. PROBLEM FORMULATION AND THE CENTRALIZED

GAUSS–NEWTON SOLUTION

For an adaptive network represented by a set N =
{1, . . . , N}, we would like to estimate an M × 1 unknown
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parameter vector x = [x1, . . . , xM]T belonging to a closed con-
vex set X. Let f(x) = [f1(x), . . . , fN(x)]T : �M → �N be a
continuous and differentiable global cost function throughout
the network, where fk(x) : �M → � is the individual cost
function associated with node k ∈ N by collecting the mea-
surements from the related events. The estimation problem can
be formulated as

min
x

‖f(x)‖2. (1)

By rewriting ‖f(x)‖2 = ∑N
k=1 |fk(x)|2, the object of each

node in the network is to seek an M × 1 vector x that solves
the following NLLSs problem with the form:

min
x

N∑

k=1

|fk(x)|2. (2)

The GN method is well recognized for solving NLLS prob-
lems. Let us consider an FC that can communicate with all
nodes in the network. Given an initial good guess x0, a cen-
tralized scheme can be implemented on FC based on the GN
update rule in an iterative way

xi+1 = xi − αidi (3)

where xi is the estimation of x at iteration i, di denotes a
descent direction of GN, and αi is the step size parameter that
ensures xi+1 is nearer to a stationary point than xi.

In this article, we adopt the following assumption for the
above optimization problem [16], [32].

Assumption 1:
1) The stationary points xs ∈ �M that satisfy the first-order

condition

FT(
xs)f

(
xs) = 0

always exist, where F(x) is the Jacobian of f(x) with
the size N × M and the entries F(x)k,m = ∂fk(x)/∂xm,
1 ≤ k ≤ N and 1 ≤ m ≤ M.

2) For all x ∈ X and k ∈ N , let

�min = min
k∈N

(
λmin

(
FT(x)F(x)

))

�max = max
k∈N

(
λmax

(
FT(x)F(x)

))

where the notations λmin(·) and λmax(·) denote the min-
imum and maximum eigenvalues, respectively, 0 <

�min < �max < ∞.
Under Assumption 1, a local minimizer of (1), denoted by
x∗ that belongs to the set of stationary points, always exists.
Thus, the descent direction of GN update is written as

di = [
FT(

xi)F
(
xi)]−1

FT(
xi)f

(
xi). (4)

By rewriting

F(x) = col

{
∂f1(x)

∂x
,
∂f2(x)

∂x
, . . . ,

∂fN(x)

∂x

}

(N × M) (5)

and defining

gk(x) = ∇fk(x) = ∂fk(x)

∂x
, (1 × M) (6)

we get

di =
[

N∑

k=1

gT
k

(
xi)gk

(
xi)

]−1 N∑

k=1

gT
k

(
xi)fk

(
xi). (7)

Therefore, we have the following GN iteration update:

xi+1 = xi − αi

[
N∑

k=1

gT
k

(
xi)gk

(
xi)

]−1 N∑

k=1

gT
k

(
xi)fk

(
xi). (8)

To successfully implement (8) in a centralized way, we
assume that the FC can communicate with all nodes over
network and the same initial estimate is given by x0

k =
x0, k ∈ N . In the centralized GN algorithm, the computation
results of gT

k (xi)gk(x
i) and gT

k (xi)fk(xi) from each node k are
aggregated by the FC to obtain the new estimate xi+1 based
on (8). Then, the estimate xi+1 is returned to all nodes until
an appropriate termination condition is satisfied, for example,
‖xi+1 − xi‖ ≤ ε or i = I, where ε and I are the predefined
minimum norm decline and the maximum allowed number
of iterations, respectively. Thus, the centralized GN includes
actually a step of diffusion for new estimate xi+1 from FC to
individual nodes.

Note that the centralized GN algorithm for NLLS problems
is not guaranteed to converge to the local minimizer x∗. For
this, two preconditions need to be satisfied. First, we require
that the initial guess for x0 is close to a local minimizer x∗.
Otherwise, FT(x)F(x) is not a sufficiently good approximation
to the Hessian of f (x), thereby resulting in GN to give unex-
pected results. Second, the step size αi is required to satisfy
the Wolfe conditions [16], which guarantee the update xi+1 to
be nearer x∗ than xi. The step size denoted by αi

k is usually
selected by node k at different time i. The resulting algorithm
is called the damped GN algorithm. One can easily design a
line search method to find any guessed step size satisfying the
following Wolfe conditions:

∥
∥
∥f

(
xi+1

)∥
∥
∥

2 ≤ ∥
∥f

(
xi)∥∥2 − b1α

ifT(
xi)F

(
xi)di (9)

and

fT
(

xi+1
)

F
(

xi+1
)

di ≥ b2α
ifT(

xi)F
(
xi)di (10)

with 0 < b1 < b2 < 1. The first of the Wolfe conditions (9)
guarantees that the step length αi decreases the objective func-
tion ‖f(x)‖2 at every iteration, while the second (10) tests
whether the descent is sufficient. In this article, to simplify
the mathematical discussion, the constant step size scheme
αi

k = α ∈ (0, 1] will be adopted for every node k at any
iteration i.

III. ATU DIFFUSION GAUSS–NEWTON

In the centralized GN algorithm, the FC only exchanges
information with its immediate neighborhood. However, for a
large-scale network, it is difficult that all nodes in the network
can communicate with the FC via 1-hop. For example, each
node in wireless sensor networks [33] has the restricted com-
munication capacity and energy supply. On the other hand,
multihop communication techniques involve the complicated
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routing protocols, which need to be well designed. Thus,
peer-to-peer communication is preferred for the large-scale
network.

For networked control systems [34], a distributed control
implementation depends largely on neighborhood coopera-
tion [35]. Our object is to develop a diffusion strategy for the
GN algorithm, in which each node in the network can obtain
the good estimate by combining the estimates from peer-to-
peer neighbors. The idea behind this strategy is that the local
node can leverage the global knowledge to seek the better esti-
mate, since every node carries the information from different
neighbors.

Consider the adaptive network N , where any node k at time
i receives a set of estimates {xi

l}l∈Nk from all its 1-hop neigh-
bors Nk including itself. Consequently, node k can aggregate
the local estimates {xi

l}l∈Nk by a weighted combination way
denoted by

yi
k =

∑

l∈Nk

cklxi
l (11)

where ckl is the weighted coefficient between node k and l ∈
Nk. And the conditions

∑

l∈Nk

ckl = 1 and ckl ∈ [0, 1] for l ∈ Nk (12)

hold.
The role of the above aggregation step is obvious, i.e., any

node in the network can fuse the updated information from
all nodes across the network, not just the neighborhoods, since
every node tends to have the different neighbors for connected
network. The latest estimates are passed by all neighbored
nodes, thereby resulting in the good diffusion effect. Moreover,
for a large-scale distributed network, every node can give an
estimate based on the diffusion knowledge, while only FC
does it in a centralized network. That is particularly useful for
a distributed network, where the estimates can be accessed
from any individual node over the network.

Once the aggregate estimate yi
k is obtained as the local

weighted estimate, any node k in the network can imple-
ment the GN update step when it is regarded as an FC in
its neighborhood Nk as (8)

xi+1
k = yi

k − α
[
Qi

k(y)
]−1

qi
k(y) (13)

where we define

Qi
k(y) � FT

l∈Nk
(yi

l)Fl∈Nk(y
i
l)

�
∑

l∈Nk

gT
l (yi

l)gl

(
yi

l

)
(M × M) (14)

qi
k(y) � FT

l∈Nk
(yi

l)fl∈Nk(y
i
l)

�
∑

l∈Nk

gT
l (yi

l)fl(y
i
l) (M × 1) (15)

and Fl∈Nk(y
i
l) is a matrix of size nk × M, each of whose rows

is an 1 × M vector gl(y
i
l) = ([∂fl(x)]/[∂x]) |x=yi

l
for l ∈ Nk,

while fl∈Nk(y
i
l) is a vector of size M with the entry fl(yi

l) for
l ∈ Nk.

Algorithm 1 ATU Diffusion GN Algorithm

1: Given the initial guesses x0, the accuracy ε, the maximum
number of iterations I and the coefficients {ckl} satisfying
(12) for all nodes

2: for each iteration i = 0 to I do
3: for each node k = 1 to N do
4: receive {xi

l} from the immediate neighbor l of node k
5: aggregate step: yi

k = ∑
l∈Nk

cklxi
l

6: send {gT
k (yi

k)gk(y
i
k), gT

k (yi
k)fk(y

i
k)} to the immediate

neighbor l
7: update step: xi+1

k = yi
k − α[Qi

k(y)]−1qi
k(y)

8: if ‖xi+1
k − xi

k‖ < ε or i ≥ I then
9: return xi+1

k
10: else
11: send xi+1

k to the immediate neighbour l
12: end if
13: end for
14: end for

Combining the above steps, we obtain the ATU diffusion
algorithm.

In Algorithm 1, the norm ‖xi+1
k −xi

k‖ is a very good indica-
tor of the error, which is used to substitute the descent degree
of the cost function between two successive iterations. When
successive estimation values are close, it is safe to terminate
the iteration for a descent-based iterative method. Such a ter-
mination criterion has been proved to be suitable for accurately
measuring the error [16]. For the condition i ≥ I, in real
problems, the number of allowed iterations is related to the
admissible computation time determined by the complexity of
a different cost function. Thus, such a termination condition
is application-dependent and serves mainly as a stopping rule
of the algorithm to avoid infinite running time.

Fig. 1 shows the iterative procedure of implementing the
ATU algorithm on every node, which consists of three steps.
First, every node sends its current estimate to all its neighbors.
Initially, all nodes are assigned with the same estimate x0. The
received estimates are aggregated by every node based on a
linear combiner (11). Specifically, at iteration i, node k obtains
the aggregated estimate yi

k. Second, every node k returns
the current computation of {gT

k (yi
k)gk(y

i
k), gT

k (yi
k)fk(y

i
k)} to its

neighbors. Finally, the GN update (13) is implemented on
every node. It is worth noting that the order of implementing
aggregate step and update step can be reversed, which results
in a new algorithm, named UTA. In our recent work [31], we
provide the performance comparisons in detail between ATU
and UTA, as well as their variants.

Deleting the aggregate step of the ATU algo-
rithm (the fifth line in Algorithm 1) and substituting
{gT

k (yi
k)gk(y

i
k), gT

k (yi
k)fk(y

i
k)} with {gT

k (xi
l)gk(x

i
l), gT

k (xi
l)fk(x

i
l)}

in the sixth line, we obtain a noncooperative diffusion GN
algorithm, where each node in the network acts as the FC
to implement the centralized GN by communicating with all
immediate neighbors. Its GN update step is given by

xi+1
k = xi

k − α
[
Qi

k

(
xi

k

)]−1
qi

k

(
xi

k

)
(16)
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Fig. 1. ATU diffusion GN.

where we define

Qi
k

(
xi

k

)
� FT

l∈Nk

(
xi

k

)
Fl∈Nk

(
xi

k

)

�
∑

l∈Nk

gT
l

(
xi

k

)
gl

(
xi

k

)
(M × M) (17)

and

qi
k

(
xi

k

)
� FT

l∈Nk

(
xi

k

)
fl∈Nk

(
xi

k

)

�
∑

l∈Nk

gT
l

(
xi

k

)
fl
(
xi

k

)
(M × 1). (18)

Note that the arguments in expressions (14), (15), (17),
and (18) show the main difference between ATU and non-
cooperative algorithms.

In order for the new algorithm to be applicable, it is
important to note that the square matrix Qi

k(y) needs to be
invertible during iterations. However, it is impractical for a
dynamic system. Two methods can be considered to address
the problem. One is to add a small multiple �k of the identity
matrix I to Qi

k(y), such that Qi
k(y) + �kI is positive defi-

nite, which is called the Levenberg−Marquardt method [16].
This method has a difficulty on determining a good value for
�k > 0. The other is to compute the unique Moore−Penrose
inverse, which gives a good approximate solution to the
inversion of the matrix by using the singular value decompo-
sition [36]. For simplicity, we assume that Qi

k(y) is invertible
in later discussion.

It is worth noting that our proposed ATU algorithm does
not add any additional communication cost compared with
the noncooperative GN algorithm. That is, the communication
amount per iteration is 2nkM + nkM2 for ATU, UTA [31], as
well as noncooperative GN, where nk is the number of 1-hop
neighbors of any node k. On the computation cost, there is a
slight increase of nkM multiplication and nkM addition scalar
operations on the aggregate step for every iteration. The total
complexity for ATU or UTA is order of O(M3) since inversion
operation of an invertible matrix with size M ×M is inevitable
by using the well-known Gauss–Jordan elimination.

So, the question that remains is how well the ATU diffusion
GN algorithm performs in term of its expected convergence
behavior, since the diffuse cooperation also fosters uncertainty.
First, what are the sufficient conditions of convergence for
the ATU algorithm? Second, is the ATU algorithm better
on convergence, compared with its noncooperative counter-
part? In other words, what are the benefits of cooperation?
The following analysis and simulations will answer the above
questions.

IV. CONVERGENCE ANALYSIS

A. Assumptions and Data Model

To proceed with the analysis, several reasonable assump-
tions need to be given as commonly done in [5] and [37].

Assumption 2:
1) fl∈Nk(x) is bounded for all x ∈ X ⊂ R

M near x∗, and
satisfies

∥
∥fl∈Nk(x)

∥
∥ ≤ emax

and
∥
∥fl∈Nk(x

∗)
∥
∥ = emin

where ‖fl∈Nk(x
∗)‖ denotes the minimum value of

‖fl∈Nk(x)‖ when evaluated at x = x∗.
2) For all x ∈ X and k = 1, . . . , N, let

σmin = min
k∈N

(
λmin

(
gT

k (x)gk(x)
))

and

σmax = max
k∈N

(
λmax

(
gT

k (x)gk(x)
))

where 0 < σmin < σmax < ∞.

3) Both Fl∈Nk(x) and gk(x) are Lipschitz continuous on X

with Lipschitz constant ω > 0 such that
∥
∥Fl∈Nk(x) − Fl∈Nk(x

′)
∥
∥ ≤ ω

∥
∥x − x′∥∥

and
∥
∥gk(x) − gk(x

′)
∥
∥ ≤ ω

∥
∥x − x′∥∥

for all x, x′ ∈ X. Furthermore, we have the following
results [38]:

∥
∥gT

k (x)fk(x) − gT
k (x′)fk(x′)

∥
∥ ≤ γf

∥
∥x − x′∥∥

and
∥
∥gT

k (x)gk(x) − gT
k (x′)gk(x

′)
∥
∥ ≤ γF

∥
∥x − x′∥∥

where γf ≥ ω(emax + �max) and γF ≥ 2�maxω are the
corresponding Lipschitz constants.

In addition, the study of the local convergence behavior needs
to be considered from the global view of network, since the
performance of individual node depends on the whole network,
including cooperation rule and network topology. Thus, we
introduce the global quantities

xi
G � col

{
xi

1, . . . , xi
N

}
, (NM × 1)

yi
G � col

{
yi

1, . . . , yi
N

}
, (NM × 1)

x∗ � col
{
x∗, . . . , x∗}, (NM × 1)
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di
G(y) � col

{
di

1(y), . . . , di
N(y)

}
, (NM × 1)

di
G � col

{
di

1, . . . , di
N

}
, (NM × 1)

where

di
k(y) �

[
Qi

k(y)
]−1

qi
k(y), k ∈ N

and

di
k �

[
Qi

k(x
i
k)

]−1
qi

k

(
xi

k

)
, k ∈ N .

An N × N aggregation matrix C can be given with non-
negative real entries {ckl} that is redefined with the following
conditions:

ckl = 0 if l /∈ Nk and
N∑

l=1

ckl = 1, ckl ≥ 0. (19)

The conditions (19) indicate that the sum of all entries on
each row of the matrix C is one, while the entry ckl of C
shows the degree of closeness between nodes k and l. We will
see the influence of selecting {ckl} on the performance of the
resulting algorithms in later simulations.

Similarly, we introduce an N × N adjacency matrix � with
the element ϕkl ∈ {0, 1}, in which ϕkl = 1 if node k is linked
with node l; otherwise, 0.

We also introduce the extended aggregation matrix G

G � C ⊗ IM, (NM × NM).

B. Main Theoretical Results

In this section, we list the main theoretical results, while the
detailed proof is placed in the associated supplementary mate-
rial. We establish a temporal–spatial relation across network
based on the following considerations. First, the diffusion
strategy leads to the frequent spatial interaction between the
neighborhoods, thereby each node k is influenced by both local
information, such as fk and spatial information from neighbors
l ∈ Nk such as {fl, xl}. Second, the iteration way decides that
the estimates and the local collected information on each node
k are time variant, i.e., {f i

k, xi
k}.

To begin with (11), we have

yi
G = Gxi

G. (20)

Using (20), we rewrite the local ATU update step (13) as a
global representation

xi+1
G = Gxi

G − αdi
G(y). (21)

Accordingly, we get the global noncooperative GN update step

xi+1
G = xi

G − αdi
G. (22)

Subtracting x∗ on both sides of (21) and embedding (22),
we get

xi+1
G − x∗ = (

Gxi
G − x∗ − αdi

G

) + α
(
di

G − di
G(y)

)
. (23)

Using the triangle inequality for vectors, we get the
following recursion:
∥
∥
∥xi+1

G − x∗
∥
∥
∥ ≤ ∥

∥Gxi
G − x∗ − αdi

G

∥
∥ + α

∥
∥di

G(y) − di
G

∥
∥. (24)

Inequality (24) can be regarded as a temporal–spatial recur-
sion relation, where the superscript i and the subscript G reflect
the evolution of ATU algorithm from temporal and spatial
dimensions, respectively. We establish the relation between
ATU and noncooperative diffusion algorithms from the global
perspective.

Consequently, we can obtain a new temporal–spatial recur-
sion relation as lemma 1.

Lemma 1: Let Assumptions 1 and 2 hold. The recursion
relation
∥
∥
∥xi+1

G − x∗
∥
∥
∥ ≤ t1‖G‖2

∥
∥xi

G − x∗∥∥2

+ t2‖G‖∥∥xi
G − x∗∥∥ + α

∥
∥di

G(y) − di
G

∥
∥ (25)

holds, where

t1 � αω

2
√

�min
, t2 � (1 − α)

√
�max√

�min
+

√
2Nαωemin

�min
. (26)

Proof: See Section I of the supplementary material.
Note that the left-hand side of (25) is the network-wide error

norm at time i + 1, while the right-hand side of (25) can be
related to the network-wide error norm ‖xi

G − x∗‖ at time i
and we can confirm that ‖di

G(y) − di
G‖ is upper bounded by

a given constant ξ > 0, that is,
Lemma 2: Let Assumptions 1 and 2 hold. The norm of the

descent discrepancy di
G(y) − di

G is upper bounded as

∥
∥di

G(y) − di
G

∥
∥ ≤ ξ � N2γf 


i

σmin

+
(
N

√
σmaxεmax + N2γf 


i
)
ζi

σmin(1 − ζi)
(27)

where


i � a2

i∑

j=1

(a1)
j−1 (28)

a1 � 1 + αnkl + 2αnklγf

2nlσmin
(29)

a2 �
(
nl + 3nk|l + 3nl|k

)
α
√

σmaxεmax

2nlσmin
(30)

ζi �
NγF
i

σmin
∈ (0, 1). (31)

nkl denotes the number of nodes that are both in Nk and Nl,
nk|l denotes the number of nodes that are in Nk and not in Nl.

Proof: See Section II in the supplementary material.
Then, we can rewrite the relation (25) of the network error

between the successive two times for our ATU algorithm as
∥
∥
∥xi+1

G − x∗
∥
∥
∥ ≤ t1‖G‖2

∥
∥xi

G − x∗∥∥2 + t2‖G‖∥∥xi
G − x∗∥∥ + αξ

(32)

which can be regarded as a nonlinear discrete dynamical
system.

Let yi � ‖xi
G − x∗‖, we will simplify notation of (32) with

the general form

yi+1 ≤ t1‖G‖2(yi)2 + t2‖G‖yi + αξ (33)
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whose steady-state equilibrium is a level [39] that solves

y = φ(y) = t1‖G‖2y2 + t2‖G‖y + αξ. (34)

Note that the steady-state equilibrium means that the vari-
able yi is invariant under the law of motion indicated by the
dynamical system. With the expression (34), it is easy to know
that the recursion (33) is governed by the dynamical system
yi+1 = φ(yi). Thus, guaranteeing the stability of the system
yi+1 = φ(yi) will be needed.

By applying the steady-state equilibrium theory [39] to ana-
lyze the dynamical system (32), we obtain its steady-state
equilibrium point in the following theorem.

Theorem 1: Let Assumptions 1 and 2 hold. Under the
following conditions:

1

t2 + 2
√

t1αξ
< ‖G‖ <

t2 + 2
√

t22 − t1αξ

t22 − 4t1αξ
(35)

and

max

{
t22‖G‖2 − 2t2‖G‖ − 3

4t1ξ‖G‖2
, 0

}

< α

< min

{
t22‖G‖2 − 2t2‖G‖ + 1

4t1ξ‖G‖2
, 1

}

(36)

as long as the initial condition y0 is smaller than ymax, the
nonlinear system (33) converges to the unique steady-state
equilibrium point ymin, where

ymax = 1 − t2‖G‖ +
√

(1 − t2‖G‖)2 − 4t1αξ‖G‖2

2t1‖G‖2
(37)

and

ymin = 1 − t2‖G‖ −
√

(1 − t2‖G‖)2 − 4t1αξ‖G‖2

2t1‖G‖2
. (38)

That is

lim
i→∞ yi = ymin, if y0 < ymax (39)

or equivalently

lim
i→∞

∥
∥xi

G − x∗∥∥ = ymin, if ‖x0
G − x∗‖ < ymax. (40)

Proof: See Section VI in the supplementary material.
Based on Theorem 1, the ATU algorithm converges asymp-

totically to the minimizer x∗ if the initial global error
‖x0

G − x∗‖ < ymax holds. Conversely, the initial condition
‖x0

G − x∗‖ > ymax will lead to instability of algorithm and
growing global error level. This sufficient condition suggests
that the convergence of proposed algorithm depends on the
good initial iterates, which is also required by the traditional
GN method to give good estimates. When our algorithm is
applied to problems with unfavorable initial guess and many
local minimums, the selected step size should not be too large
to guarantee the convergence and avoid missing the nearest
local minimum. The Wolfe conditions are also applicable for
this case.

C. Comparison of Convergence Behaviors

In this section, we try to provide a qualitative analy-
sis of convergence behaviors for ATU and noncooperative
algorithms. For this purpose, error recursions for our ATU
algorithm and noncooperative algorithm can be described as
follows:

∥
∥
∥xi+1

G − x∗
∥
∥
∥ ≤ (

1 + αγf ‖�D‖‖�‖)∥∥G
(
xi

G − x∗)∥∥ (41)

and
∥
∥
∥xi+1

G − x∗
∥
∥
∥ ≤ (

1 + αγf ‖�d‖‖�‖)∥∥xi
G − x∗∥∥ (42)

whose proof can be found in Section VII in the supplementary
material.

From (6), we know that yi
k is a convex combination of

{xi
l} for l ∈ Nk. Thus, Assumption 1 holds for yi

k. Under
Assumption 1(1), we have

∥
∥
∥
[
Qi

k(y)
]−1

∥
∥
∥ =

∥
∥
∥
∥
∥
∥
∥

⎡

⎣
∑

l∈Nk

gT
l

(
yi

l

)
gl

(
yi

l

)
⎤

⎦

−1
∥
∥
∥
∥
∥
∥
∥

≤ 1

nkσmin
(43)

and
∥
∥
∥
[
Qi

k

(
xi

k

)]−1
∥
∥
∥ ≤ 1

nkσmin
. (44)

Furthermore, we have

‖�D‖ ≤ 1

nkσmin
(45)

and

‖�d‖ ≤ 1

nkσmin
. (46)

Thus, we know that 1+αγf ‖�D‖‖�‖ and 1+αγf ‖�d‖‖�‖ are
upper bounded by a small common constant when the small
step size is selected.

The recursions (41) and (42) describe how the global error
evolves over time for diffusion and noncooperative GN algo-
rithms, respectively. It is important to note the difference
between the linear structure (41) and the nonlinear struc-
ture (32). If we replace the lesser-or-equal with an equal
sign in (41), the resulted linear system will be unstable
due to (1 + αγf ‖�D‖‖�‖)‖G‖ > 1 if ‖G‖ ≥ 1 [39].
However, under guaranteed convergence conditions for dif-
fusion ATU, (41) and (42) reveal the qualitative behavior
of global error reduction in ATU and noncooperative GN
algorithms, respectively.

To analyze the convergence behavior of the diffusion GN
algorithm, we introduce the spectral radius of a square
matrix [40], which is defined as the largest absolute value
among its eigenvalues and denoted by ρ(·). Because of G =
C ⊗ IM , we have

ρ(G) = |λmax(G)| = |λmax(C ⊗ IM)|
≤ |λmax(C)||λmax(IM)| = |λmax(C)| = 1 (47)

where |λmax(C)| = 1 is based on the known conclusion [41,
Appendix C] if C satisfies (19). Thus, (47) indicates that all
eigenvalues of G are smaller than 1, i.e., |λ(G)| ≤ 1.
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Whenever we select an aggregation matrix C based on (19)
so that |λ(C)| ≤ 1, the spectral radius of G representing coop-
erative diffusion case is generally smaller than the spectral
radius of IN representing the noncooperation case. That is, the
cooperative diffusion GN algorithm will enforce a reduction of
error xi

G−x∗ over the noncooperative version at every iteration.
In other words, the error norm ‖xi

G − x∗‖ in the coopera-
tion strategy decays more rapidly than that in noncooperation
strategy.

The above analysis confirms the role of diffusion step in
GN algorithm for improvements on convergence rate. In the
following section, we will examine the profiles of ‖G‖ and
ρ(G) by investigating numerically their values.

V. APPLICATION TO NODE LOCALIZATION MODEL

In order to assess the proposed algorithm performance, we
apply the ATU diffusion to the example of node localiza-
tion [42], which has become the important foundation of some
applications in reality. Examples include target tracking [43],
traffic monitoring [44], sensing coverage [45], and so on.
These applications need to determine the location of objects
without any specialized positioning devices, such as GPS.
By collecting the information from the decentralized nodes
located in a monitoring area, node localization algorithms
aim to report the position estimate quickly, while maintaining
accuracy and stability.

The typical node localization can be modeled as a NLLS
problem [11], [30], which is described by using previous same
notations as follows. We assume the position of target node is
an M×1 unknown vector x = [x1, . . . , xM]T, where M = 2 for
two-dimensional (2-D) plane or M = 3 for three-dimensional
space. In a monitoring network, such as the wireless sensor
network, which is denoted by N = {1, . . . , N}, beacon node
(BN) k ∈ N can communicate with its immediate neighbors
Nk within its communication range (CR), and is aware of its
own position that is not known for other nodes. Thus, for the
target localization problem, the objective would be to minimize
the following cost function:

‖f(x)‖2 =
N∑

k=1

|fk(x)|2

=
N∑

k=1

∣
∣
∣xTx − 2hT

k x + ‖hk‖2 − |rk|2
∣
∣
∣
2

(48)

where hk is the M × 1 coordinate of BN k, rk is the measured
distance between BN k and the target, and fk(x) denotes the
error cost function on individual BN k. Generally, the mea-
surement ri

k at time i is a noisy version of the real distance Ri
k

and can be modeled as

ri
k = Ri

k

(
1 + noisei

k

)
(49)

where noisei
k is the additive ambient Gaussian noise with zero-

mean and finite variance v2
k .

Fig. 2 shows an illustration of adaptive network, where
20 BNs are deployed in a 50 × 50 m2 2-D surveillance area
and and the target is located at the center of area. For the sake
of fairness, the positions of BNs are generated randomly in

Fig. 2. Illustration of adaptive network in a random deployment, where the
red rectangle denotes the target and the blue + denotes the measuring node.

Fig. 3. Profile of ‖G‖ under different aggregate rules and radio ranges.

each simulation, while the target node is located stationarily
in the center point of area. Given the parameter settings that
the CR is 25 m between any two nodes, nodes in the network
implement cooperatively the ATU diffusion algorithm to esti-
mate the target position. The network-wide average error for
all nodes will be used as the main performance metric, which
is defined by

Errori
network � 1

N

N∑

k=1

(∥
∥xi

k − x∗∥∥)
. (50)

A. Alternatives for Aggregate Rule

Many alternative aggregate rules can be easily obtained
for our ATU algorithm to generate the aggregation matrix C,
including the well-known nearest neighbor rule, the Laplacian
rule, and the relative degree rule [31].

Obviously, both nearest neighbor and Laplacian rule follow
condition (19), such that the extended aggregation matrix G
can be generated. Fig. 3 gives the profile of ‖G‖ against the
number of nodes for the above three rules under randomly
generated network topologies. As the figure shows, ‖G‖ ≥ 1 is
always true for all aggregate rules and topologies. The profile
of ρ(G) is not shown in Fig. 3 since ρ(G) is always equal to 1.

The following simulation results show that the above three
rules exhibit unobservable discrepancy in terms of convergence
performance. For simplicity, we evaluate the performance of
the ATU algorithm only under the nearest neighbor rule, which
is the easiest way.

B. Verifying the Convergence of ATU

Our theoretical results have presented the sufficient condi-
tions of convergence for the ATU algorithm, i.e., the good
initial estimate x0

G, the appropriate step size parameter α and
network topology represented by G. First, the GN method for
solving the NLLS problems is intrinsic to a good initial esti-
mate, such that the Hessian in the Newton method can be
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(a) (b) (c)

Fig. 4. Performance comparison on transient network error for 2000 time steps under noise standard deviation. (a) v = 0.1, (b) v = 0.3, and (c) v = 0.5.

Fig. 5. Network-wide steady-state localization errors averaged over 20 nodes
against noise variances at iteration 2000.

approximate to simplify the computation of the second-order
term. For the target localization application, many traditional
methods can provide the coarse-grained initial guess with
low communication and computation cost, such as triangu-
lation [46]. In our simulation, all estimates start from 0, i.e.,
x0

G = 0. Second, we consider the step size in our diffusion
strategy as a constant for all nodes at every time, which needs
to satisfy the condition (36). In general, a reasonable larger
step size will exhibit the faster initial convergence. On the
contrary, a smaller non-negative step size will show slow con-
vergence, thus leading to more consumption of computation
and communication resource.

We compare the convergence of diffusion algorithm with
several range-based localization algorithms, including the
well-known multilateration [46], noncooperative GN referred
in (16), and consensus GN [12], where the last two meth-
ods are iterative and depend on the parameter of step size. To
make the comparison fair, we use the same step size value
α = 0.005 under different noise variance, although our diffu-
sion algorithm allows the step size selected in a larger scope,
which will be investigated in subsequent section. Fig. 4 shows
the comparison results on the transient network error over 2000
time steps when the noise standard deviation v is set as 0.1,
0.3, and 0.5 on all nodes, respectively. It is clear that larger
noise variance leads to larger estimation errors for all four
algorithms. However, our diffusion GN has better resistance
to noisy communication than other algorithms that are incom-
petent for high noise levels. The reason is that each node in
ATU absorbs global knowledge instead of local information.
Accordingly, the GN descent step in ATU is affected solely
by global noise level instead of local noise with large pertur-
bation. The bad estimates resulted from biased local noise are
shared by all nodes throughout the network.

In Fig. 4, we also can see that diffusion GN shows the faster
convergence than noncooperative version. As we explained,

Fig. 6. Steady-state localization errors for all 20 nodes across the network.

the reason is that diffusion GN provides a decline on global
error between two neighboring iterations over noncooperative
solution. Such decline room benefits from the diffusion step
that helps exchange temporal–spatial information across nodes
in the network instead of local temporal information as in non-
cooperative schemes. Note that the noncooperative GN with
a small step size α = 0.002 causes the slower convergence,
while it cannot guarantee to reach the steady state for a large
step size α = 0.005 (see the tail of its curve).

Fig. 5 shows the averaged steady-state estimation error over
all 20 nodes at 2000 iterations under different noise variance
levels. It is obvious that localization errors rely heavily upon
the noise levels and diffusion version outperforms other ver-
sions on the steady-state performance. From Fig. 6, which
shows the steady-state error over 20 nodes, the expected equi-
librium effect is achieved by ATU since each node receives
the global information instead of local limited information.

C. Robust to Step Size

As an important factor affecting the convergence of algo-
rithm based on the sufficient condition (36), it is unrealistic
to adjust frequently the value of step size in practice. Thus,
the benefit of allowing a larger scope of step size is obvious.
Under other parameters given as follows: v = 0.1 and N = 20,
it can be seen from Fig. 7 that ATU algorithm exhibits fast
convergence in the case of large step size (e.g., α = 0.05)
and maintains the stability of the system, while the noncoop-
erative algorithm is very sensitive to the step size. Specially,
the noncooperative algorithm cannot converge to the steady
state and shows the growing error over time under the step
size α = 0.005. The observations verify that ATU can reach
a higher fault tolerance level on selecting the step size, since
the global diffusion step is helpful to mitigating the fluctua-
tions on errors. The potential benefit is that the step size needs
not to be carefully designed in practice. As we presented in

Authorized licensed use limited to: Temple University. Downloaded on August 17,2022 at 04:19:07 UTC from IEEE Xplore.  Restrictions apply. 



WU et al.: ATU DIFFUSION INTELLIGENT ESTIMATION SCHEME FOR ADAPTIVE NETWORKED SYSTEMS 3831

Fig. 7. Convergence comparison with noncooperative algorithms by varying
the step size.

Fig. 8. Convergence comparison by varying CR.

the previous sections, the convergence of ATU can be guaran-
teed as long as the sufficient conditions about α and ‖G‖ are
satisfied.

D. Impact of Network Connectivity

The performance of the ATU algorithm depends on the
network connectivity to provide the information diffusion over
the network, just as the sufficient condition (35) for ‖G‖ is
required for reaching a stable equilibrium point. Both the num-
ber of nodes and CR will result in the change on the physical
connectivity of network. In this simulation, we evaluate the
impact of network topology on ATU performance by adjust-
ing the CR, while keeping the number of nodes 20 and the
step size α = 0.01.

In Fig. 8, we randomly generate the learning curves for
ATU algorithm under the CR of 5, 10, 20, and 30. Under
CR = 5, where the network is disconnected, it is shown
that the ATU algorithm converges to a steady-state equilib-
rium with large steady state error. In this case, the diffusion
strategy is not being fully exploited to reduce the steady-state
error due to the low connectivity in the network disrupting
the flow of information. From the discussion of Corollary 3 in
Section V of the supplementary material and the investigation
of diffusion step, a high connectivity network can effectively
improve the convergence performance of ATU to achieve low
steady-state error.

E. Robustness to Node and Link Failures

It is well known that the diffusion strategy is inherently
robust to changes of the network topology, resulting from
node or link failures. Figs. 9 and 10 show the transient
network error in the presence of node and link failures when
N = 20, CR = 20, and α = 0.01. When the random failures
without critical nodes or links are generated with probabil-
ity 50% independently, where a node or link is critical if
its removal will disconnect the network into two (or more)

Fig. 9. Convergence comparison in the presence of node failures.

Fig. 10. Convergence comparison in the presence of link failures.

Fig. 11. (a) Network topology used in this example. (b) Performance
comparison between ATU and UTA.

separate components, the ATU algorithm is robust to these
failures and exhibits excellent convergence and steady-state
performance. However, in the presence of failures with critical
nodes or links, the performance of ATU degrades signifi-
cantly since local nodes cannot obtain the real-time global
information through the diffusion step.

F. Comparison With UTA in Sparse Networks

From the perspective of implementing the mechanism, the
ATU algorithm has the same processing and communication
complexity as the UTA algorithm in the work [31] and the
different order of two steps (i.e., ATU and UTA). However,
the essential difference between them is that UTA needs to
learn the knowledge from both 1-hop and 2-hops neighbors,
while ATU uses information only from 1-hop neighbors to
solve the global minimization problem (2) (see [31, eqs. (55)
and (56)]). In other words, the performance of UTA depends
largely on the neighboring nodes that are 1-hop and 2-hops
away. Therefore, in the case of sparse networks with insuf-
ficient diffusion, UTA definitely will take a relatively long
duration for convergence and also provide poor steady state
performance. To illustrate this, we randomly generate a sparse
but connected network with unbalanced node degrees by set-
ting N = 20 and CR = 15, which is depicted in Fig.
11(a). Fig. 11(b) shows the corresponding convergence curves
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by averaging over 100 experiments. It can be observed that
ATU and consensus GN algorithms perform well due to their
same ATU strategy, while the performance of UTA degrades
significantly and becomes unacceptable. The results confirm
obvious performance benefits of our ATU algorithm compared
with UTA.

VI. CONCLUSION

In this article, we proposed the ATU diffusion GN paradigm
for NLLSs problems in a distributed networked system and
investigated elaborately its convergence performance. The
presented theoretical results showed that the cooperation strat-
egy can obtain a room for improvement in terms of conver-
gence and guarantee algorithm’s convergence when the derived
sufficient conditions are satisfied. Particularly, cooperation has
a robust effect on the network. The simulation results also
showed that the cooperation strategy can lead to the advan-
tages in many aspects, including convergence rate, robustness
to node or link failures, and step size by applying the ATU
algorithm to target localization in a wireless network.

Our future work will focus on three directions. First, our
scheme can be combined with various popular topology to
match different application scenarios, such as cyclic, clus-
tered, and gossip-based network. Second, we will evaluate the
feasibility by using our Aggregation-then-Update strategy to
improve the performance for a batch of Newton-type methods
in the adaptive networked system. Third, adaptive versions of
our diffusion GN can be proposed by designing the adaptive
step size to resist the fail of local convergence and the adap-
tive weights to avoid data incest and double counting from
neighborhood.
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